

محاضرة رقم 8&9

Lecture No. 6&7

1

الجانب العملي
Practical

تدرسي المادة : م.م صكر عبد الكاظم صكر

Practical endocrinology –First course

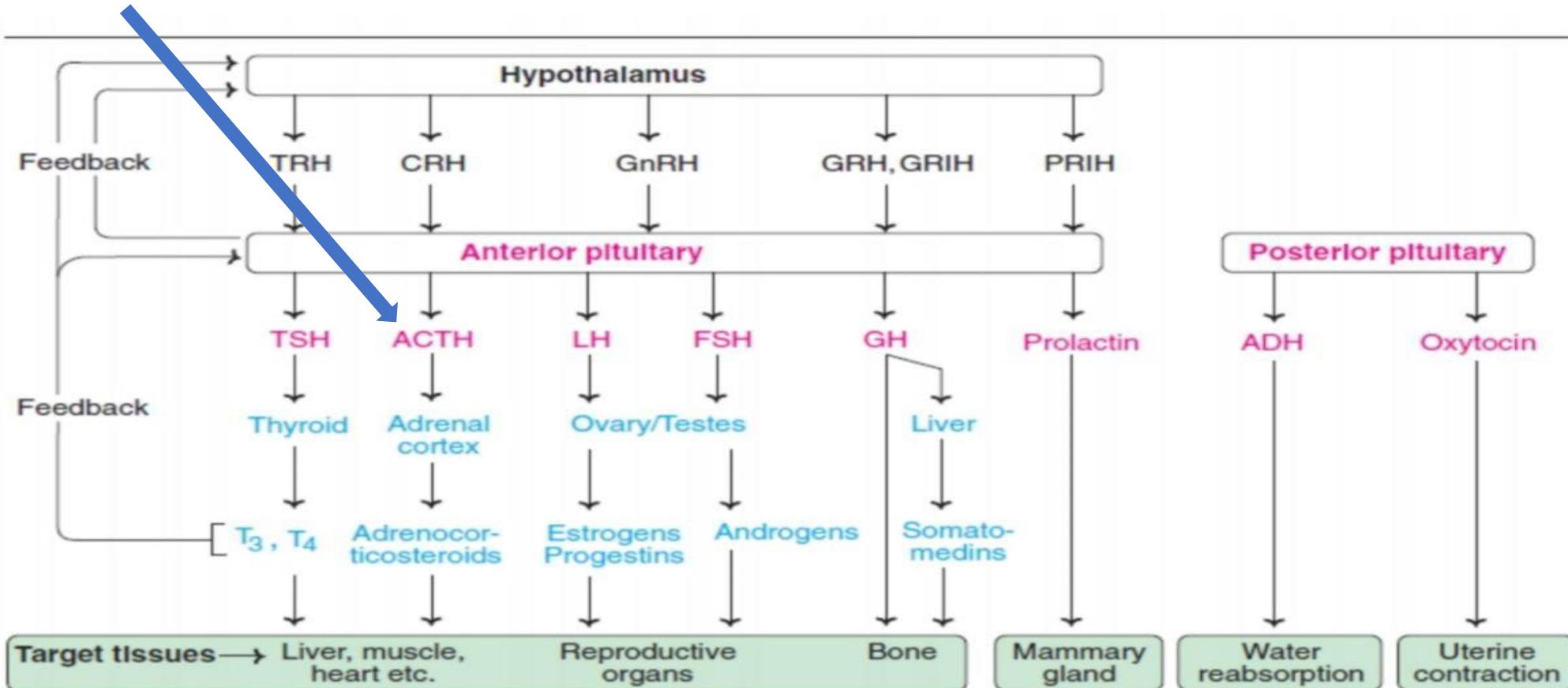
Lecture- 8&9- ESTIMATION OF ACTH AND CORTISOL

Sawa University

College of health and medical techniques

Department of Medical Laboratories

Third Stage

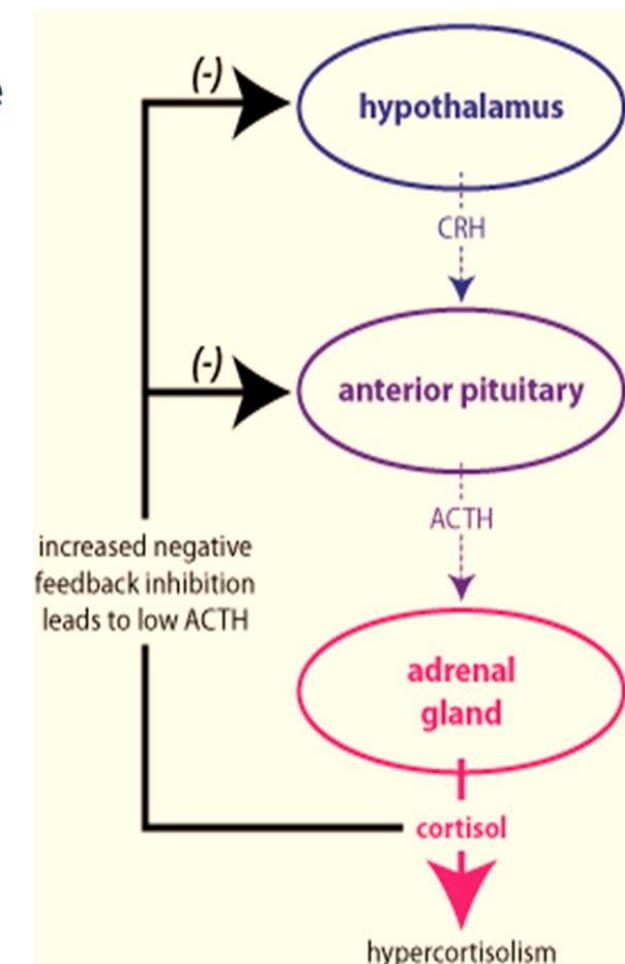
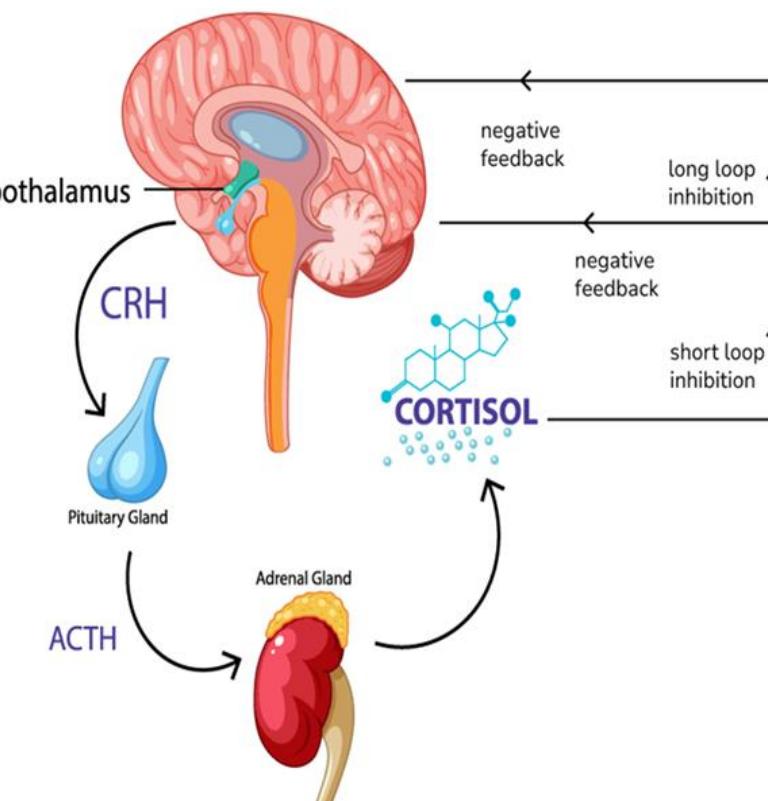

جامعة ساوة الاهلية

كلية التقنيات الصحية والطبية

قسم تقنيات المختبرات الطبية

المرحلة الثالثة

Adrenocorticotropic Hormone (ACTH) or Corticotropin.



- The principal actions of corticotropin are exerted on the adrenal cortex and extra adrenal tissue. ACTH increases the synthesis of corticosteroids by **the adrenal cortex** and also **stimulates their release from the gland**. Profound changes in the *adrenal structure, chemical composition and enzymatic activity are observed as a response to ACTH*.

ACTH produces both a tropic effect on steroid production and tropic effect on adrenal tissue.

Cortisol is a steroid hormone produced by the adrenal cortex in response to adrenocorticotropic hormone (ACTH) from the pituitary gland.

Cortisol secretion is regulated by the hypothalamic-pituitary- adrenal (HPA) axis through a negative feedback mechanism.

Mechanism of Adrenocorticotropic Hormone

1. Hypothalamic Control

The hypothalamus secretes corticotropin-releasing hormone (CRH) in response to stress, circadian rhythms, or low cortisol. CRH stimulates the anterior pituitary to release ACTH.

2. Pituitary Control

ACTH stimulates the adrenal cortex, to produce and release cortisol.

ACTH levels fluctuate based on feedback from circulating cortisol levels.

3. Adrenal Cortex Response

Cortisol is synthesized from cholesterol and released into the bloodstream.

It binds to glucocorticoid receptors, influencing metabolism, immune function, and stress response.

4. Negative Feedback Mechanism

Elevated cortisol levels inhibit CRH and ACTH secretion via negative feedback to the hypothalamus and pituitary.

5. Circadian Rhythm of Cortisol

Cortisol levels peak in the early morning (6–9 AM) and decline throughout the day.

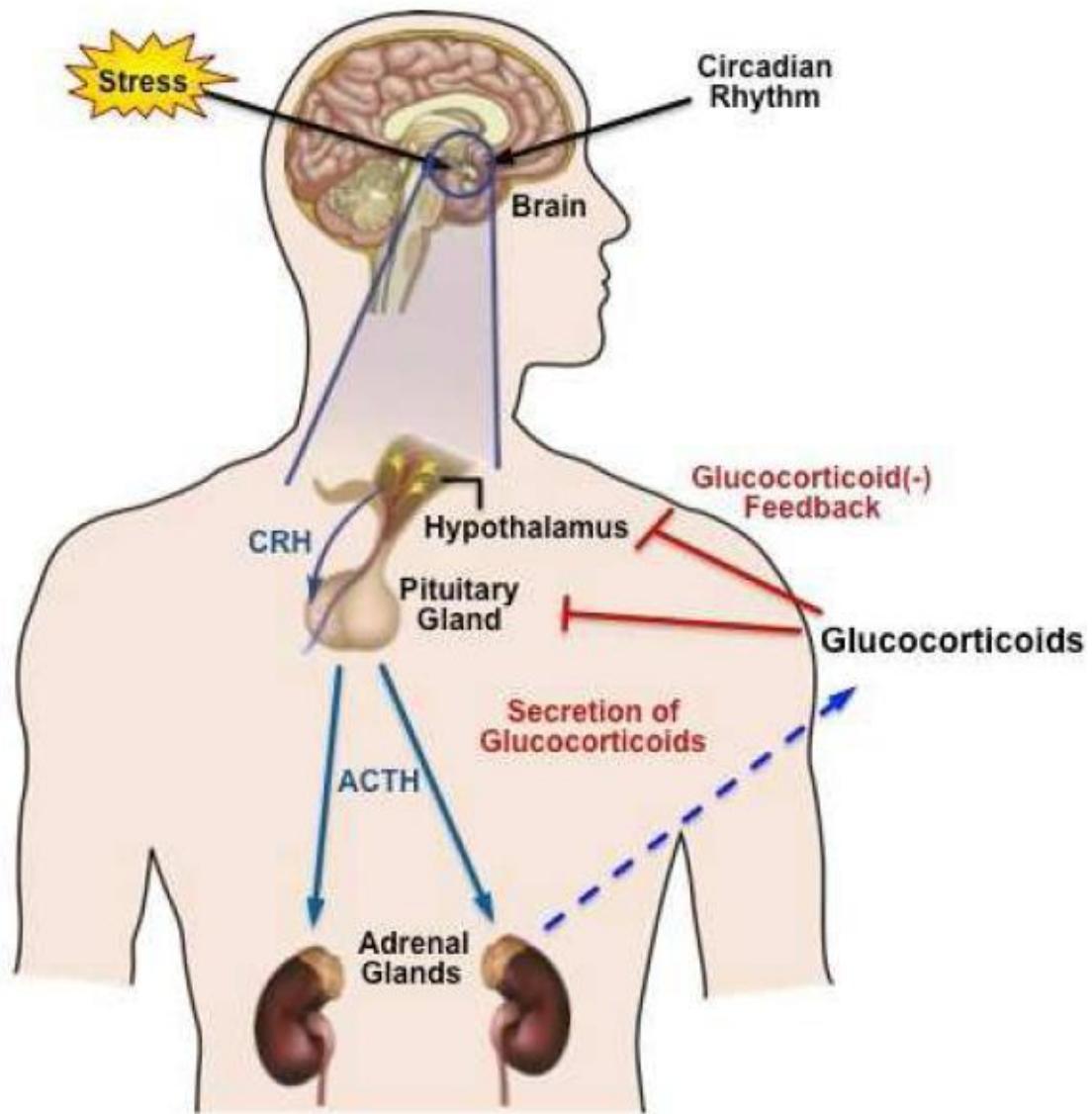
Lowest levels occur at midnight, aligning with the sleep-wake cycle.

6. Stress Response and Cortisol

Physical and psychological stressors increase CRH release, leading to elevated ACTH and cortisol secretion.

1. Glucocorticoid hormones: The important glucocorticoids are cortisol, cortisone and corticosterone. They bring about several biochemical functions in the body.

(a) Effects on carbohydrate metabolism: Glucocorticoids **promote** the **synthesis of glucose (gluconeogenesis)**. This is brought about by **increasing the substrates (particularly amino acids)** and **enhancing the synthesis of phosphoenolpyruvate carboxykinase**, the **rate limiting** enzyme in gluconeogenesis. The overall influence of glucocorticoids on carbohydrate metabolism is to increase blood glucose concentration. The *biological actions of glucocorticoids generally oppose that of insulin*.


(b) Effects on lipid metabolism: Glucocorticoids **increase** the **circulating free fatty acids**. This is caused by two mechanisms.

(i) Increased breakdown of storage triacylglycerol (lipolysis) in adipose tissue.

(ii) Reduced utilization of plasma free fatty acids for the synthesis of triacylglycerols.

(c) Effects on protein and nucleic acid metabolism: Glucocorticoids **exhibit** both **catabolic and anabolic effects** on protein and nucleic acid metabolism. They **promote transcription (RNA synthesis) and protein biosynthesis in liver**. These **anabolic effects** of glucocorticoids are **caused by the stimulation of specific genes**. Glucocorticoids (particularly at high concentration) cause catabolic effects in extrahepatic tissues (e.g. muscle, adipose tissue, bone etc.). This results in **enhanced degradation of proteins**.

(d) Effects on water and electrolyte metabolism: The influence of glucocorticoids on water metabolism is **mediated** through antidiuretic hormone (ADH). **Deficiency of glucocorticoids causes increased production of ADH**. ADH decreases glomerular filtration rate causing water retention in the body.

A

Cortisol, cortisone, and corticosterone are all steroid hormones, but differ in their function and presence in species.

Cortisol is the primary stress hormone in humans

corticosterone is the primary one in many other animals like birds and rodents.

Cortisone is a less active form of cortisol that is converted to it in the body or used as a synthetic medication

Differences Between Cortisol & Cortisone

Aspect	Cortisol	Cortisone
Biological Roles	Primary stress hormone; affects metabolism, immunity, blood pressure	Precursor to cortisol; anti-inflammatory effects
Origin	Produced directly by adrenal glands	Produced as a precursor, converts to cortisol
Conversion	Directly active	Converted into active cortisol in the liver
Medical Applications	Synthetic forms treat autoimmune, allergic conditions	Used in injections for localized inflammation
Circadian Rhythm	Peaks in early morning	Levels depend on cortisol conversion

Corticosterone active glucocorticoid (in rodents/birds)

(e) Effects on the immune system: Glucocorticoids (particularly **cortisol**), in high doses, **suppress** the host immune response. The steroid hormones **act at different levels**—damaging lymphocytes, *impairment of antibody synthesis, suppression of inflammatory response etc.*

(f) Other physiological effects of glucocorticoids: Glucocorticoids are involved in several physiological functions.

(i) Stimulate the fight and flight response (to face sudden emergencies) of **catecholamines**.

(ii) Increase the production of gastric HCl and pepsinogen.

(iii) Inhibit the **bone formation**, hence the subjects are at a **risk for osteoporosis**.

Mechanism of action of glucocorticoids: Glucocorticoids bind to specific receptors on the target cells and bring about the action. These hormones mostly **act at** the transcription level and control the protein synthesis.

Methods for Cortisol Estimation

Several laboratory methods are used to estimate cortisol levels in biological fluids, including serum, plasma, saliva, and urine.

1. Enzyme-Linked Immunosorbent Assay (ELISA)

- A commonly used method based on antigen-antibody interactions.
- Utilizes enzyme-labeled antibodies and a colorimetric reaction for detection.
- High sensitivity and specificity. Used for both serum and saliva samples.

2. Radioimmunoassay (RIA)

- Involves radiolabeled cortisol and antibodies to measure hormone levels.
- High accuracy but requires special handling of radioactive materials.
- Mostly replaced by safer immunoassays in modern laboratories.

3. Chemiluminescent Immunoassay (CLIA)

- Uses chemiluminescent-labeled antibodies for enhanced sensitivity.
- Faster and more precise compared to ELISA.
- Commonly used in clinical settings.

4. Liquid Chromatography-Mass Spectrometry (LC-MS/MS)

- The gold standard for cortisol estimation due to its high specificity and accuracy.
- Capable of distinguishing cortisol from similar steroid hormones.
- More expensive and requires sophisticated equipment.

1. اختبار الممنوعي المرتبط بالإنزيم (ELISA)

طريقة شائعة الاستخدام تعتمد على تفاعلات المستضد والأجسام المضادة. تستخدم الأجسام المضادة الموسومة بالإنزيم وتفاعل قياس اللون للكشف. حساسية عالية وخصوصية. تستخدم لكل من عينات المصل واللعاب.

2. اختبار الممنوعية الإشعاعية (RIA)

تتضمن الكورتيزول الموسوم بالإشعاع والأجسام المضادة لقياس مستويات الهرمون. دقة عالية ولكنها تتطلب معالجة خاصة للمواد المشعة.

غالباً ما يتم استبدالها باختبارات مناعية أكثر أماناً في المختبرات الحديثة.

3. اختبار الممنوعة الكيميائي الضوئي (CLIA)

تستخدم الأجسام المضادة الموسومة بالكيماء الضوئية لتحسين الحساسية. أسرع وأكثر دقة مقارنة باختبار ELISA. تستخدم بشكل شائع في الإعدادات السريرية.

4. كروماتوغرافيا السائل-مطياف الكتلة (LC-MS/MS)

المعيار الذهبي لتقدير الكورتيزول نظراً لخصوصيته ودقته العالية. قادرة على التمييز بين الكورتيزول والهرمونات الستيرويدية المشابهة. أكثر تكلفة وتنطلب معدات متقدمة.

Sample Collection and Handling 1

1. Serum/Plasma Cortisol Estimation

Sample Type: Blood collected in a plain or heparinized tube.

Timing: Samples should be collected in the morning (6–9 AM) and evening (4–6 PM) to assess diurnal variation.

Storage: If not analyzed immediately, serum/plasma should be stored at -20°C.

2. Salivary Cortisol Estimation

Advantages: Non-invasive, convenient for multiple sampling.

Collection: Passive drool or salivette swabs.

Storage: Frozen at -20°C until analysis.

3. Urinary Free Cortisol (UFC) Estimation

Sample Type: 24-hour urine collection.

Purpose: Evaluates overall cortisol secretion over a day.

Storage: Refrigerated during collection, then frozen for analysis.

جمع العينات والتعامل معها

1. تقدیر الكورتيزول في المصل/البلازما

نوع العينة: دم تم جمعه في أنبوب عادي أو معالج بالهيبارين.

التوقيت: يجب جمع العينات في الصباح (6-9 صباحاً) والمساء (4-6 مساءً) لتقدير التباين اليومي.

التخزين: إذا لم يتم تحليلها على الفور، فيجب تخزين المصل/البلازما عند درجة حرارة 20 درجة مئوية.

2. تقدیر الكورتيزول في اللعاب

المزايا: غير جراحي، ومناسب لأخذ عينات متعددة.

الجمع: مسحات اللعاب السلبي أو اللعاب.

التخزين: مجمد عند درجة حرارة 20 درجة مئوية حتى التحليل.

3. تقدیر الكورتيزول الحر في البول (UFC)

نوع العينة: جمع بول لمدة 24 ساعة.

الغرض: تقييم إفراز الكورتيزول الكلي على مدار اليوم.

التخزين: مبرد أثناء الجمع، ثم مجمد للتحليل.

•Normal Reference Ranges for Cortisol

- Morning Serum Cortisol: 6–23 µg/dL (165–635 nmol/L)
- Evening Serum Cortisol: 3–13 µg/dL (83–359 nmol/L)
- Salivary Cortisol (Morning): 3.5–27.0 nmol/L
- Urinary Free Cortisol: 20–90 µg/24 hours

Normal Reference Ranges for ACTH

- Morning (around 8 AM): 9 to 52 pg/mL (picograms per milliliter)
- Afternoon (around 4 PM): 5 to 20 pg/mL
- **ACTH levels** fluctuate throughout the day, typically being **highest in the morning** and **lowest in the evening**, in accordance with the body's **natural circadian rhythm**.

تتقلب مستويات ACTH طوال اليوم، وعادة ما تكون أعلى في الصباح وأدنى في المساء، وفقاً للإيقاع اليومي الطبيعي للجسم.

TEST		DIAGNOSIS
cortisol level	ACTH level	
high	low	tumor in adrenal gland
high	high	tumor in the anterior pituitary
low	high	damage to the adrenal gland
low	low	hypopituitary adrenal insufficiency

Clinical Significance of Abnormal Cortisol

□ Elevated Cortisol Levels (Hypercortisolism)

- **Cushing's Syndrome:** Excess cortisol production due to adrenal adenomas or prolonged steroid use.
- **Cushing's Disease:** ACTH-secreting pituitary adenoma leading to increased cortisol levels.
- **Chronic Stress:** Persistent activation of the hypothalamic-pituitary-adrenal (HPA) axis.
- **Ectopic ACTH Syndrome:** ACTH-producing tumors (e.g., small cell lung cancer).

□ Reduced Cortisol Levels (Hypocortisolism)

- **Addison's Disease:** Primary adrenal insufficiency causing low cortisol levels.
- **Secondary Adrenal Insufficiency:** Pituitary dysfunction leading to decreased ACTH and cortisol.
- **Congenital Adrenal Hyperplasia (CAH):** Enzyme deficiencies affecting cortisol synthesis.

الأهمية السريرية لاختلال هرمون الكورتيزول

ارتفاع مستويات الكورتيزول (فرط إفراز الكورتيزول)

متلازمة كوشينغ: زيادة إنتاج الكورتيزول بسبب أورام الغدة الكظرية أو استخدام стерiodات لفترات طويلة.

مرض كوشينغ: ورم الغدة النخامية المفرز لهرمون قشر الكظر يؤدي إلى زيادة مستويات الكورتيزول.

الإجهاد المزمن: التنشيط المستمر لمحور تحت المهد - الغدة النخامية - الغدة الكظرية.

متلازمة إفراز هرمون قشر الكظر غير الطبيعي: الأورام المنتجة لهرمون قشر الكظر (مثل سرطان الرئة ذي الخلايا الصغيرة).

انخفاض مستويات الكورتيزول (نقص إفراز الكورتيزول)

مرض أديسون: قصور الغدة الكظرية الأولى الذي يسبب انخفاض مستويات الكورتيزول.

قصور الغدة الكظرية الثانوي: خلل في وظائف الغدة النخامية يؤدي إلى انخفاض هرمون قشر الكظر والكورتيزول.

فرط تنسج الغدة الكظرية الخلقي (CAH): نقص الإنزيمات التي تؤثر على تخلق الكورتيزول.

High ACTH Levels can be caused by:

1. **Cushing's Disease** – A tumor in the pituitary gland that secretes excessive ACTH, leading to overproduction of cortisol by the adrenal glands.
2. **Ectopic ACTH Syndrome** – A condition where non-pituitary tumors (like lung cancers) produce ACTH, resulting in high cortisol levels.
3. **Addison's Disease** – Primary adrenal insufficiency where the adrenal glands do not produce enough cortisol, and the pituitary compensates by producing excess ACTH.
4. **Chronic Stress** – Prolonged stress can cause increased ACTH secretion as part of the body's stress response.

يمكن أن تحدث مستويات ACTH المرتفعة بسبب:

1. مرض كوشينغ - ورم في الغدة النخامية يفرز ACTH بشكل مفرط، مما يؤدي إلى الإفراط في إنتاج الكورتيزول بواسطة الغدد الكظرية.
2. متلازمة ACTH خارج الرحم - حالة تنتج فيها الأورام غير النخامية (مثل سرطانات الرئة) ACTH، مما يؤدي إلى ارتفاع مستويات الكورتيزول.
3. مرض أديسون - قصور الغدة الكظرية الأولى حيث لا تنتج الغدة الكظرية ما يكفي من الكورتيزول، وتعوض الغدة النخامية عن طريق إنتاج ACTH الزائد.
4. الإجهاد المزمن - يمكن أن يؤدي الإجهاد المطول إلى زيادة إفراز ACTH كجزء من استجابة الجسم للإجهاد.

Low ACTH Levels can be caused by:

- 1. Adrenal Insufficiency** – Secondary adrenal insufficiency occurs when the pituitary doesn't secrete enough ACTH to stimulate the adrenal glands. This can result from pituitary damage or dysfunction.
- 2. Cushing's Syndrome (Exogenous)** – Caused by taking corticosteroid medications that suppress ACTH production and the adrenal glands' function.
- 3. Pituitary Dysfunction or Tumors** – Damage to the pituitary gland from tumors or other conditions can result in insufficient ACTH production.
- 4. Hypopituitarism** – A condition where the pituitary gland produces insufficient hormones, including ACTH.

يمكن أن يكون سبب انخفاض مستويات ACTH ما يلي:

1. قصور الغدة الكظرية - يحدث قصور الغدة الكظرية الثانوي عندما لا تفرز الغدة النخامية ما يكفي من ACTH لتحفيز الغدد الكظرية. يمكن أن ينتج هذا عن تلف الغدة النخامية أو خلل في وظائفها.
2. متلازمة كوشينغ (خارجية المنشأ) - تحدث بسبب تناول أدوية الكورتيكosteroid التي تمنع إنتاج ACTH ووظيفة الغدد الكظرية.
3. خلل الغدة النخامية أو الأورام - يمكن أن يؤدي تلف الغدة النخامية بسبب الأورام أو الحالات الأخرى إلى إنتاج غير كافٍ من ACTH.
4. قصور الغدة النخامية - حالة تنتج فيها الغدة النخامية هرمونات غير كافية، بما في ذلك ACTH.

Dynamic Function Tests for Cortisol

When baseline cortisol levels are inconclusive, dynamic tests assess adrenal function:

1. Dexamethasone Suppression Test (For Cushing's Syndrome Diagnosis)

Low-dose (1 mg): Administered at night, followed by morning cortisol measurement.

High-dose (8 mg): Differentiates between Cushing's disease and ectopic ACTH production.

2. ACTH Stimulation Test (For Adrenal Insufficiency Diagnosis)

Synthetic ACTH is injected, and cortisol response is measured.

Failure to increase cortisol indicates adrenal insufficiency.

3. Insulin Tolerance Test (ITT) (For HPA Axis Function)

Insulin-induced hypoglycemia should stimulate cortisol release. Used in cases of suspected secondary adrenal insufficiency.

اختبارات الوظائف الديناميكية للكورتيزول

عندما تكون مستويات الكورتيزول الأساسية غير حاسمة، تقوم الاختبارات الديناميكية بتقييم وظيفة الغدة الكظرية:

1. اختبار قمع ديكساميثازون (لتشخيص متلازمة كوشينغ) جرعة منخفضة (1 ملг): يتم إعطاؤها ليلاً، متبوعة بقياس الكورتيزول في الصباح.

جرعة عالية (8 ملг): تفرق بين مرض كوشينغ وإنتاج ACTH غير الطبيعي.

2. اختبار تحفيز (ACTH) لتشخيص قصور الغدة الكظرية يتم حقن ACTH الاصطناعي، ويتم قياس استجابة الكورتيزول.

يشير الفشل في زيادة الكورتيزول إلى قصور الغدة الكظرية.

3. اختبار تحمل الأنسولين (ITT) (HPA) الوظيفة محور يجب أن يحفز نقص السكر في الدم الناجم عن الأنسولين إطلاق الكورتيزول. يستخدم في حالات قصور الغدة الكظرية الثانوي المشتبه به.